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Deep Age Estimation:
From Classification to Ranking
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Abstract—Human age is considered an important biometric
trait for human identification or search. Recent research shows
that the aging features deeply learned from large-scale data
lead to significant performance improvement on facial image-
based age estimation. However, age-related ordinal information
is totally ignored in these approaches. In this paper, we propose
a novel Convolutional Neural Network (CNN)-based framework,
ranking-CNN, for age estimation. Ranking-CNN contains a set
of basic CNNs, each of which is trained with ordinal age
labels. Then, their binary outputs are aggregated for the final
age prediction. From a theoretical perspective, we obtain an
approximation for the final ranking error, show it is controlled by
the maximum error produced among sub-ranking problems, and
thus find a new error bound, which provides helpful guidance
for the training and analysis of deep rankers. Based on the new
error bound, we theoretically give an explicit formula for the
learning of ranking-CNN and demonstrate its convergence using
stochastic approximation method. Moreover, we rigorously prove
that ranking-CNN, by considering ordinal relation between ages,
is more likely to get smaller estimation errors when compared
with multi-class classification approaches. Through extensive
experiments, we show that ranking-CNN outperforms other state-
of-the-art feature extractors and age estimators on benchmark
datasets.

Index Terms—Age estimation, Convolutional Neural Networks,
Ranking algorithms, Error bound, Convergence.

I. INTRODUCTION

HUMAN age is considered an important biometric trait
for human identification or search. Relying on humans to

supply age information from face images is often not feasible
[1]. Thus, there has been a growing interest in the automatic
determination of the specific age or age range of a subject
based on a facial image. Some of the potential applications
of automatic age estimation are in law enforcement, security
control, and human computer interaction.

One major issue in age estimation models is how to extract
effective aging features from a facial image. In the past decade,
many efforts have been devoted to aging feature representa-
tions. Specifically, simple geometry features (e.g., distances
between eyes and nose) and texture features (e.g., skin wrin-
kles) were first adopted [2]. Later on, Biologically Inspired
Features (BIF) [3] were proposed and widely adopted in age
estimation applications. More recently, Scattering Transform
(ST) [4] was also proposed as an improvement over BIF by
adding filtering routes. Usually, these features can be further
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Fig. 1. Ranking-CNN for facial image-based age estimation.

enhanced through manifold learning, e.g., Orthogonal Locality
Preserving Projection (OLPP) [5].

The other important component in an age estimation model
is the estimator. Commonly, age estimation is characterized to
be a classification or regression problem. Classification models
include k Nearest Neighbors [6], Multilayer Perceptrons [7],
and the most commonly used Support Vector Machines (SVM)
[3]. For regression methods, quadratic regression [5], Support
Vector Regression (SVR) [3] and multi-instance regressor [8]
were considered in the literature. More recently, deep learning
techniques such as Convolutional Neural Networks (CNN)
have been applied to human age estimation to learn aging
features directly from large-scale facial data [9]. Experimental
results show that the deeply-learned aging patterns lead to
significant performance improvement on benchmark datasets
[10] as well as unconstrained photos [11]. However, multi-
class classification completely ignores the ordinal information
in age labels, and regression over-simplifies it to a linear
model while human aging pattern is generally nonlinear. When
humans predict a person’s age, it is usually easier to determine
if a person is elder than a specific age than directly giving
an exact age. Thus, cost-sensitive ranking techniques have
recently been introduced to age estimation [4].

In this paper, we propose a novel age ranking approach
based on CNN. Specifically, we propose a ranking-CNN model
that contains a set of basic CNNs, each of which has a se-
quence of convolutional layers, sub-sampling layers and fully
connected layers. Basic CNNs are initialized with the weights
of a pre-trained base CNN and fine-tuned with the ordinal age
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labels through supervised learning. Then, their binary outputs
are aggregated to make the final age prediction. Fig. 1 shows
an illustration of our model. The major contribution of this
work is summarized as follows:

• To the best of our knowledge, ranking-CNN is the first
work that uses a deep ranking model for age estimation,
in which binary ordinal age labels are used to train a set
of basic CNNs, one for each age group. Different from
the regression or the multi-class classification approaches,
each basic CNN in ranking-CNN can be trained using all
the labeled data, leading to better performance of feature
learning and also preventing overfitting. Through exten-
sive experiments, we show that ranking-CNN achieves
superior results when compared with other state-of-the-
art age estimation methods.

• From a theoretical point of view, we provide a tighter
error bound for age ranking than prior work [4], which
proved that the final ranking error is bounded by the sum
of errors generated by all the classifiers. We divide the
errors of sub-problems into two groups: overestimated
errors (the sample’s actual label is less than certain age
classifier but was classified as older than that age) and
underestimated errors (the sample’s actual label is greater
than that of certain age classifier but was classified as
younger than that age). However, instead of simply ag-
gregating errors, we rearrange them in an increasing order
and go deep into the analysis of the underlying differences
between any adjacent sub-classifier errors inside each
group. By the accumulation of those differences, we
theoretically obtain an approximation for the final ranking
error, which is controlled by the maximum error produced
among sub-problems. From a technical perspective, the
new error bound provides very helpful guidance for the
training and analysis of ranking-CNN.

• Based on the new error bound, we give a Stochastic
Gradient Descent (SGD) based scheme to train ranking-
CNN in the context of GPU’s high performance comput-
ing [12]. We employ stochastic approximation to assert
the convergence, in which the parameters are updated
as a stochastic process, leading to a limit of Ordinary
Differential Equation (ODE) with stationary points that
approximate the minimizers of the final ranking loss.

• Furthermore, we rigorously derive the expectation of
prediction error of ranking-CNN and prove that ranking-
CNN, by taking the ordinal relation between ages into
consideration, is more likely to get smaller estimation
errors when compared with multi-class classification ap-
proaches (i.e., CNNs using the softmax function).

The abstract version of this paper has been published
in [13]. The rest of the paper is arranged as follows. In
Section II, we briefly review related work in age estimation,
CNN, and the convergence analysis. In Section III, we first
introduce ranking-CNN for age estimation. Then, we establish
the theoretical error bound of ranking-CNN and show the
convergence of learning ranking CNNs. Finally, we compare
ranking-CNN with softmax-based multi-class CNNs and show
that ranking method is preferred for age estimation. In Section

IV, we present our age estimation results on the benchmark
datasets. Finally, we conclude in Section V.

II. RELATED WORK

A. Age Estimation

One of the earliest age estimation model can be traced back
to [14], in which Active Appearance Model (AAM) [15] was
employed to extract shape and appearance features from facial
images. Based on these features, various classifiers such as
shortest-distance classifier, quadratic function and neural net-
works were compared. Also, two assumptions were proposed:
whether human aging process is age-specific or appearance-
specific. That is, whether it is identical for everyone or only
people with similar appearance would have similar aging
processes.

Earlier works of age estimation usually follow the latter
assumption and tend to cluster similar faces before estimation.
In [16], the aging process was simulated using AAM for the
same individual with a series of age-ascending facial images
so that specific models associated with different people’s aging
processes can be constructed. Also, to interpret the long-term
aging subspace of a person, Geng et al. [17] proposed AGing
pattErn Subspace (AGES). AGES is a person-specific age esti-
mation method, which fulfills the estimation by projecting the
facial image into the aging subspace with best reconstruction.
However, a person’s facial features might be almost identical
in some age ranges. To resolve this issue, Zhang et al. [18]
employed a warped Gaussian process to model a person’s age,
in which both person-specific and general aging information
were adopted. In general, it is hard to obtain sufficient data
to derive the long-term aging process for every individual. In
[19], several short-term patterns, which usually are easier to
get, were integrated to construct a long-term aging sequence.
More recently, Shu et al. [20] aimed to automatically render
aging faces in a personalized way by learning a set of age-
group specific dictionaries.

Since the available images for a specific person are typically
very limited, many researchers focus on developing non-
personalized approaches instead. For instance, Yang and Ai
[21] adopted a real AdaBoost algorithm to build a strong
classifier from a series of weak ones using Local Binary
Patterns [22]. Li et al. [23] proposed a method based on
ordinal discriminative feature learning, which preserves lo-
cality ordinal information and removes redundancy features.
Ni et al. [24] dealt with images with noisy labels through an
outlier removal step using PCA and learned a multiple-instance
regression estimator. In [3], BIF features were shown to be
effective for age estimation on various datasets. Meanwhile,
Guo et al. [25] investigated the influence of gender and race
on age estimation while Lou et al. [26] introduced a graphical
model to jointly learn age and facial expression labels. In [27],
Eidinger et al. adopted dropout-SVM on the age estimation of
unfiltered faces.

Recently, manifold learning algorithms were incorporated to
achieve better performance of age estimation. In [5], Guo et
al. proposed to use aging manifold with locally adjusted robust
regressor. Dimension reduction approaches such as Principal
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Component Analysis (PCA) [28], Locally Linear Embedding
[29] and Orthogonal Locality Preserving Projections [30] were
employed to learn a low-dimensional embedding. Then, SVR
was used together with SVM for data approximation and local
adjustment, respectively. Meanwhile, discriminative manifold
learning was adopted for better visualization results in [31].
Later, Guo and Mu [32] proposed to use kernel partial least
squares regression for simultaneous dimensionality reduction
and age estimation.

More recently, CNN-based methods have been widely
adopted for age estimation due to its superior performance
over existing methods. Yi et al. [9] introduced a multi-task
learning method with a relatively shallow CNN. Wang et
al. [10] trained a deeper CNN for extracting features from
different layers, and the features were then integrated by PCA.
Based on these features, age estimation results from different
regression and classification approaches were compared. In
[33], Rothe et al. adopted the very deep VGG-16 architecture
[34] for age estimation. In [35], Liu et al. used two large-scale
deep neural networks, and fused the results from classification
and regression for better performance. Zhu et al. [36] dis-
cussed an apparent age estimation problem with deeply learned
features, in which the age labels are annotated by human
assessors instead of the real chronological age. In both [11]
and [37], CNN’s performance on unconstrained facial images
were validated. Hu et al. also considered to train the neural
network from the age difference information [38].

Instead of multi-class classification and regression methods,
ranking techniques derived from Ranking SVM [39], Rank-
Boost [40], [41] and RankNet [42] were introduced to the
problem of age estimation. With the ranking algorithms, the
ordinal information of age labels is preserved, and the nature
of human aging process is reflected. In [43], the method using
ranking algorithms for age estimation was first introduced, in
which multiple hyperplanes parallel to each other were used in
a single kernel space. Later, a cost-sensitive ordinal ranking
framework was proposed with ST features [4], where non-
parallel hyperplanes were adopted to allow different kernel
spaces for different binary classifiers. Most recently, Niu et
al. [44] proposed to formulate age estimation as an ordinal
regression problem with the use of multiple output CNN.

B. Convolutional Neural Networks

There are numerous kinds of CNN models developed in
deep learning. The exact forms could vary, but the major
components and computations are similar. CNN models de-
rived from LeNet [45] consist of alternating convolutional
and pooling layers followed by fully-connected layers with
the input to successive layers being the feature maps from
previous layers. Weights in layers are updated simultaneously
for representative features and classification with a specific
loss function through back propagation.

CNNs have been widely used on a variety of applications.
In natural language processing, SENNA system has achieved
state-of-the-art performance on tasks including language mod-
eling, part-of-speech tagging and semantic role labeling with
a convolutional architecture [46]. For text classification, CNN

architectures have been widely adopted and achieved superior
outcomes [47], [48].

In the computer vision field, CNN models have been applied
to various tasks in the past decade. Great successes have been
achieved in image classification [49], [50], object detection
[51], [52], [53], face recognition [54], [55], [56] and image
segmentation [57], [58]. Dating back to LeNet [59], [45], CNN
was first introduced to solve the digit recognition problem
using the MNIST database. The architecture of LeNet is
relatively simple but effective. It contains two convolutional
layers followed by two sub-sampling layers and two fully
connected layers. The input is handwritten digits [60], and
the output is the prediction from the network.

More recently, with the implementation using GPUs [49],
[61], CNN models with deep architectures have achieved
breakthroughs on object recognition problems in large-scale
image datasets, e.g., the ImageNet dataset [62]. Furthermore,
to build more effective CNN models, several new components
were introduced: activation unit such as rectified linear unit
(ReLU) [63] helps to accelerate the convergence during train-
ing and has a positive influence on the performance [49];
regularizer like dropout prevents overfitting by setting some
activation units to zero in a specific layer [64]; and batch
normalization allows the use of much higher learning rates
to make training faster and to improve performance [65].

C. Convergence

Few theoretical results for the learning algorithm of CNNs
is available even though it became one of the hottest topic
for machine learning nowadays. Back Propagation (BP), a
widely used algorithm for training neural networks, is shown
to converge to a local minimum of the least squares error in
[66], using an ODE approximation method. Detailed analysis
has been gone through to prove the convergence theorem for
a BP neural network with a hidden layer in [67]. BP with
a momentum (BPM), a variation of BP, aims at improving
its convergence speed. Phansalkar and Sastry analyzed the
behavior of BPM for a one layer neural network with MAE
type loss function in [68] and explains why BPM achieves a
faster convergence. SGD is developed to avoid unnecessary
work in computing the gradient over the entire dataset and
deal with new data in an online setting.

As an online gradient method, convergence of SGD can be
proved by stochastic approximation. It was first introduced
by Robbins and Monro [69] in the early 1950s. Kushner
discussed sufficient conditions for its convergence in his book
[70], and then those criterion were adopted in [66] to study
adaptive algorithms. Later, more general theory was presented
in [71]. In recent years, it has been the subject of an enormous
literature, both theoretical and applied, due to the large number
of applications and the interesting theoretical issues in the
analysis of “dynamically defined” stochastic processes.

III. RANKING-CNN FOR AGE ESTIMATION

The training of ranking-CNN consists of two stages: pre-
training with facial images and fine-tuning with age-labeled
faces. First, a base network is pre-trained with unconstrained
facial images [27] to learn a nonlinear transformation of the
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Fig. 2. Architecture of a Basic Binary CNN

input samples that captures their main variation. From the
base network, we then train a set of basic binary CNNs with
ordinal age labels. Specifically, we categorize samples into two
groups: with ordinal labels either higher or lower than a certain
age, and then use them to train a corresponding binary CNN.
The fully connected layers in the binary CNN first flatten the
features obtained in the previous layers and then relate them to
a binary prediction. The weights are updated through SGD by
comparing the prediction with the given label. Finally, all the
binary outputs are aggregated to make the final age prediction.
In the following, we present our system in details.

A. Basic Binary CNNs

1) Architecture and Algorithms: As shown in Fig. 2, a basic
CNN has a classic architecture: three convolutional and sub-
sampling layers, and three fully connected layers. Specifically,
C1 is the first convolutional layer with feature maps connected
to a 5× 5 neighboring area in the input. There are 96 filters
applied to each of the 3 channels (RGB) of the input, followed
by Rectified Linear Unit (ReLU) [63]. S2 is a sub-sampling
layer with feature maps connected to corresponding feature
maps in C1. In our case, we use max pooling on 3× 3
regions with the stride of 2 to emphasize the most responsive
points in the feature maps. S2 is followed by local response
normalization (LRN) that can aid generalization [49].

C3 works in a similar way as C1 with 256 filters in 96
channels and 5× 5 filter size followed by ReLU. Layer S4
functions similarly as S2, and is followed by LRN. Then, C5
is the third convolutional layer with 384 filters in 256 channels
and smaller filter size 3×3, followed by the third max pooling
layer S6. We show the visualization of the feature maps after
each layer later in Section III-A2.

F7 is the first fully connected layer in which the feature
maps are flattened into a feature vector. There are 512 neurons
in F7 followed by ReLU and a dropout layer [64]. F8 is the
second fully connected layer with 512 neurons that receives
the output from F7 followed by ReLU and another dropout
layer. F9 is the third fully connected layer and computes the
probability that an input x (i.e., output after F8) belongs to
class i using the logistic function. Notice that we use the
logistic function instead of softmax as the output of a basic
CNN is binary. The optimal model parameters of a network are
typically learned through minimizing a loss function. We use
the negative log-likelihood as the loss function and minimize

it using SGD. Detailed analysis on learning and convergence
will be given in Section III-B3.

2) Feature Maps: With a single trained CNN, given an
input face, we can generate a set of feature maps after each of
the convolutional and pooling layers. As our model has three
convolutional layers and three pooling layers, we can generate
six sets of feature maps in total. The number of feature maps
in each set are determined by the number of filters in the
corresponding layer.

Representative feature maps extracted from the base CNN
are shown in Fig. 3. There are six sets of feature maps, i.e.,
CONV1, POOL1, CONV2, POOL2, CONV3, and POOL3,
and we show nine feature maps in each set. Specifically,
CONV1 is the set of feature maps after the first convolutional
layer. In CONV1, there are 96 feature maps, showing the
convolved results of the input image with 96 filters in layer C1.
We can see that the shown nine feature maps are concentrating
on different areas of the input face, some of which highlight
the eyes and the mouth while others focus on the face contour.
After max-pooling layer S2, we can get the corresponding set
of feature maps POOL1. Feature maps in POOL1 generally
have a higher contrast to pass more information to successive
layers.

Then, after the second round convolution, we obtain 256
feature maps in CONV2. Clearly, these feature maps have
more detailed information than CONV1 to further depict facial
features. Again, the contrast in feature maps in POOL2 are
enhanced to be more informative. With the filters in the third
convolutional layer C3, 384 feature maps in CONV3 are
generated. Now, each feature map in CONV3 concentrate on
a certain area to describe the original image in a specific way.
After the final pooling layer S6, the output POOL3 with 384
feature maps would be flatten in F7 as the vector to represent
the face before age estimation. From these feature maps, we
can generally get to know what information has been extracted
by the network from the original image.

B. Ranking-CNN
Assume that xi is the feature vector representing the ith

sample and yi ∈ {1, ...,K} is the corresponding ordinal label.
To train the k-th binary CNN, the entire dataset D is split into
two subsets, with age values higher or lower (or equal to) than
k,

D+
k = {(xi,+1)|yi > k}, D−k = {(xi,−1)|yi ≤ k}. (1)
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Fig. 3. Representative feature maps extracted from the base CNN: CONV1 for layer C1, POOL1 for layer S2, CONV2 for layer C3, POOL2 for layer S4,
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The binary ranking error ε(xi) is defined as,

εk(xi) = [ fk(xi)> 0][yi ≤ k ]+ [ fk(xi)≤ 0][yi > k], (2)

where fk(xi) is the output of the basic network and [· ] denotes
the truth-test operator, which is 1 if the inner condition is true,
and 0 otherwise. So, εk(xi)= 1 if the ranking order is incorrect,
and εk(xi) = 0 otherwise.

Based on different splitting of D, K−1 basic networks can
be trained from the base one. Note that in our model, each
network is trained using the entire dataset, typically resulting
in better ranking performance and also preventing overfitting.
Given an unknown input xi, we first use the basic networks
to make a set of binary decisions and then aggregate them to
make the final age prediction r(xi),

r(xi) = 1+
K−1

∑
k=1

[ fk(xi)> 0]. (3)

It can be shown that the final ranking error is bounded
by the maximum of the binary ranking errors. That is, the
ranking-CNN results can be improved by optimizing the basic
networks. We mathematically prove this in Section III-B1 fol-
lowed by the convergence analysis and theoretical comparison
between ranking and softmax-based multi-class classification.

In Algorithm 1, we provide the complete training and testing
procedure of ranking-CNN.

1) Error Bound: In ranking-CNN, we divide an age ranking
estimation problem, ranging from 1, · · · ,K, into a set of binary
classification sub-problems (K−1 classifiers). By aggregating
the results of each sub-problem, we then obtain an estimated
age r(x). To assure a better overall performance of the model,
a key issue is whether the ranking error can be reduced if we
improve the accuracy of the binary classifiers. We rigorously
address this issue with formal mathematical proof in this
section.

Here, we provide a much tighter error bound for age
ranking than that introduced in [4], which claims that the final
ranking error is bounded by the sum of errors generated by
all the classifiers. We adopt the idea in [4] that divides the
errors of sub-problems into two groups: overestimated and
underestimated errors. However, instead of simply aggregating
errors, we rearrange them in an increasing order and go
deep into the analysis of the underlying differences between
any adjacent sub-classifier errors inside each group. By the

Algorithm 1 Algorithm of Ranking-CNN
1: procedure TRAINING PROCEDURE
2: pretrain Base CNN
3: top:
4: for k = 1 to K-1 do
5: ek ← kth Basic CNN
6: end for
7: k′ ← sort ek
8: for k′ = 1 to K-1 do
9: D+

k = {(xi,+1)|yi > k′}
10: D−k = {(xi,−1)|yi ≤ k′}
11: fine-tune k

′
th Basic CNN ← ek′

12: end for
13: if not converged
14: goto top
15: end if
16: procedure TESTING PROCEDURE
17: for k = 1 to K-1 do
18: fk(xi) ← kth Basic CNN
19: end for
20: final prediction r(xi) ← 1+∑

K−1
k=1 [ fk(xi)> 0]

accumulation of those differences, we theoretically obtain an
approximation for the final ranking error, which is controlled
by the maximum error produced among sub-problems.

We denote E+ as the total number of sub-classifiers that
misclassified when y≤ k. That is, E+ = ∑

K−1
k=1 γ

+
k , where γ

+
k =

[ fk(x)> 0][y≤ k] and [·] is an indicator function taking value
of 1 when the condition in [·] holds, 0 otherwise. Similarly,
we denote E− = ∑

K−1
k=1 γ

−
k for the case of y > k, where γ

−
k =

[ fk(x)≤ 0][y > k].
For any observation (x,y), we define the cost function

(error) for each classifier as:

ek(x) =

{
e+k = (k− y+1)γ+k y≤ k
e−k = (y− k)γ−k y > k.

(4)

Thus, we have a theorem for the error bound of final ranking
error:

Theorem 1: For any observation (x,y), in which y > 0 is the
actual label (integer), then the following inequality holds:

|r(x)− y| ≤max
k

ek(x), (5)
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where r(x) is the estimated rank of age, k = 1, · · · ,K−1. That
is, we can diminish the final ranking error by minimizing the
greatest binary error.

Proof
Denote ek(x) in (4) as ek for simplicity. We split the

proof into two parts. Firstly, we show |E+−E−| = |r(x)−
y|. Secondly, we demonstrate maxk ek ≥ max{E+,E−}. By
|E+−E−| < max{E+,E−} for E+ and E− nonnegative, the
inequality (5) follows.

Firstly, we begin by definition:

r(x) = 1+∑
K−1
k=1 [ fk(x)> 0]

= 1+∑
K−1
k=1 ([ fk(x)> 0][y≤ k]+ [ fk(x)> 0][y > k])

= 1+E++∑
K−1
k=1 [ fk(x)> 0][y > k].

(6)

Subtracting (E+−E−) on both sides, we get

r(x)− (E+−E−)
= 1+∑

K−1
k=1 [ fk(x)> 0][y > k]+∑

K−1
k=1 [ fk(x)≤ 0][y > k]

= 1+∑
K−1
k=1 ([ fk(x)> 0]+ [ fk(x)≤ 0])[y > k]

= 1+∑
K−1
k=1 [y > k]

= y.
(7)

Thus |r(x)− y|= |E+−E−| holds.
Secondly, we extract all e+k > 0 and rearrange them in

an increasing order denoted as a set {e+
( j), j = 1,2, · · · ,E+}.

Similarly, we do the same operation on e−k and have the set
{e−

( j), j = 1,2, · · · ,E−}, where for any random variable ξ , ξ(·)
denotes the order Statistics.

Notice that {e+
( j), j = 1,2, · · · ,E+} is a set of losses made

by sub-classifiers with incorrect classification, where E+ is
the total number of sub-classifiers that misclassified when
y ≤ k. Next, based on the definition of the loss function
in (4), when y ≤ k, the loss associated with a sub-classifier
must be greater than 1, i.e., e+

( j) ≥ 1. Moreover, the difference
of losses between two adjacent classifiers is at least 1, i.e.,
e+
( j)− e+

( j−1) ≥ 1.
Then, we get:

e+
(E+)

= e+
(1)+ e+

(2)− e+
(1)+ · · ·+ e+

(E+)
− e+

(E+−1)
≥ 1+1+ · · ·+1  

E+

= E+ (8)

It follows e+
(E+)
≥ E+. Similarly, we can show e−

(E−) ≥ E−.
Then, maxk ek = max{e+

(E+)
,e−

(E−)} ≥ max{E+,E−}, which
completes the proof.

2) Technical Contribution of the New Error Bound:
Ranking-CNN can be seen as an ensemble of CNNs, fused
with aggregation. By showing that the final ranking error is
bounded by the maximum error of the binary rankers, we make
significant technical contribution in the following aspects:
• Theoretically, it was mentioned in both [4] and [44]

that the inconsistency issue of the binary outputs could
not be resolved because that would make the training
process significantly complicated. The aggregation was
just carried out without explicit understanding of the
inconsistency. With the tightened error bound, we can
confidently demonstrate that the inconsistency doesn’t
actually matter because as long as the maximum binary

error is decreased, the error produced by inconsistent
labels can be ignored. It would neither influence the final
estimation error nor complicate the training procedure.

• Methodologically, the tightened bound provides ex-
tremely helpful guidance for the training of ranking-CNN.
The training of an ensemble of deep learning models
is typically very time consuming, especially when the
number of sub-models is large. Based on our results, it
is technically sound to focus on the sub-models with the
largest errors. This training strategy will lead to more
efficient training to achieve the desired performance gain.
The training strategy can also be extended to ensemble
learning with other decision fusion methods.

• Mathematically, based on the new error bound, we can
theoretically give an explicit formula for the learning
of ranking-CNN and demonstrate its convergence us-
ing stochastic approximation method. Moreover, we can
rigorously derive the expectation of prediction error of
ranking-CNN and prove that ranking-CNN outperforms
other softmax-based deep learning models. The detailed
proofs are given in following sections.

3) Learning and Convergence of Ranking-CNN: For each
ranker k, given a sample (x,y), consider binary target:

r(x) =

{
1 If y > k
0 Otherwise

(9)

Given the loss function for each ranker as:

ℓ(wk) = |y−k|(−r logP(r = 1|x)− (1− r) log(1−P(r = 1|x)))
(10)

where wi denotes the parameters in k-th ranker.
In training ranking CNN, we implement the Back Propaga-

tion (5) using stochastic gradient decent as to minimize the
maximum cross entropy loss as:

wn+1
i =

{
wn

i −αn∇ℓ(wi), If ℓ(wi) = maxℓ(wi)

wn
i , Otherwise

(11)

We let the learning rate satisfies:

∑
n

αn = ∞,∑
n

α
2
n < ∞, limαn = 0. (12)

Denote

L(w1, · · · ,wK−1) = max(ℓ(w1), · · · , ℓ(wK−1)) (13)

We concatenate all parameters wi, for i = 1, · · · ,K−1 into
a vector W and interpolate the the updated parameters in each
iterations as a sequence of stochastic process W n(·) as follows:

tn =
n−1

∑
i=1

αi, (14)

W 0(t) =W n for t ∈ [tn, tn+1) (15)

W n(t) =W 0(t + tn). (16)

Then using the stochastic approximation techniques provided
in [56], or theorem 5.1 [60], we claim the sequence weakly
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converges to a limit ODE (convergence in distribution defined
as Section II [56]):

Theorem 2: Let W n(0) be fixed vectors or random vectors
independent of αn Then W n(·) weakly converges to W (·),
where W (·) satisfy the system of ODEs:

∂W (t)
∂ t

=
∂Ex∈D(L(W ))

∂W
(17)

Then the parameters converges to ODE’s equilibrium point
(w∗1, · · · ,w∗K−1) (local minimum of the loss L) by Lyapunov
condition [64]. Due to the error bound, we obtain an ap-
proximation of the local minimum of the aggregation loss:
Ex∈D|r(x)− y|.

4) Ranking vs. Softmax: In this section, we theoretically
show that our ranking-CNN outperforms softmax method
because it is more likely to get smaller ranking errors |r(x)−y|.
Thus, instead of a softmax classifier, ranking method is pre-
ferred for age estimation. The reason is that softmax failed to
take the ordinal relation between ages into consideration.

A basic CNN in ranking-CNN differs from the softmax
multi-class classification approach in the output layer. Suppose
z1, · · · ,zK are unnormalized outputs which explains the prob-
ability of a sample x belonging to each class. Denote weights
ai = ezi and ŷ as the estimated age label. For softmax, the
posterior probability of each class is given by:

P(ŷ ∈ i|x) = ezi

∑
K
k=1 ezk

=
ai

∑
K
k=1 ak

,
(18)

for i = 1, · · ·K. Then, the expected error given the label of the
observation (x,y) is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (19)

For the ranking-CNN, we use K−1 classifiers to determine
ordinal relation between adjacent ages. The posterior proba-
bility for a prediction of age greater than a specific age i is
given by:

P( fi(x)> 0|x) = ezi+1

ezi + ezi+1

=
ai+1

ai +ai+1
.

(20)

The expected error for a given sample is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (21)

We present a theorem for a three ordinal class problem.
Theorem 3: Suppose we have classes 1, 2 and 3 with weights

a,b,c > 0 respectively. There exists an ordinal relation: 1 <
2 < 3. Denote the rank obtained by ranking-CNN as r1(x) and
that by softmax as r2(x). Then

E(|r1(x)− y|)< E(|r2(x)− y|). (22)

Proof. Given a sample with label 1, the expected error for
ranking-CNN is

E(|r1(x)− y||y = 1) = 2P( f1(x)> 0, f2(x)> 0|W,U,X)
+P( f1(x)> 0, f2(x)< 0|W,X)
+P( f1(x)< 0, f2(x)> 0|W,X)

=
2bc+b2 +ac
(a+b)(b+ c)

.

(23)

For softmax,

E(|r2(x)− y||y = 1) = 2P(r2(x) = 2|W,X)
+P(r2(x) = 3|W,X)

=
2c+b

a+b+ c
.

(24)

Similarly, given y = 2,

E(|r1(x)− y||y = 2) = P( f1(x)> 0, f2(x)> 0|W,X)
+P( f1(x)< 0, f2(x)< 0|W,X)

=
ab+bc

(a+b)(b+ c)
.

(25)

E(|r2(x)− y||y = 2) = P(r2(x) = 1|W,X)
+P(r2(x) = 3|W,X)

=
a+ c

a+b+ c
.

(26)

Given y = 3,

E(|r1(x)− y||y = 3) = 2P( f1(x)< 0, f2(x)< 0|W,X)
+P( f1(x)> 0, f2(x)< 0|W,X)
+P( f1(x)< 0, f2(x)> 0|W,X)

=
2ab+b2 +ac
(a+b)(b+ c)

,

(27)
and

E(|r2(x)− y||y = 3) = 2P(r2(x) = 1|W,X)
+P(r2(x) = 2|W,X)

=
2a+b

a+b+ c
.

(28)

For ranking-CNN, it follows

E(|r1(x)− y|) = ∑
3
i=1 E(|r1(x)− i||y = i)

2+
ab+bc

(a+b)(b+ c)
.

(29)

Similarly, for softmax,

E(|r2− y|) = ∑
3
i=1 E(|r2(x)− i||y = i)

= 2+
a+ c

a+b+ c
.

(30)

Since

a+ c
a+b+ c

− ab+bc
(a+b)(b+ c)

=
a2c+ c2a

(a+b)(b+ c)(a+b+ c)
> 0,

(31)

then we conclude

E(|r1(x)− y|)< E(|r2(x)− y|). (32)

Furthermore, the case for K = 4,5, · · · could be shown in
a similar way by induction. However, when the number of
class K increases, the analytic expression of the distribution
for each class i = 1,2 · · ·K, becomes

P(ŷ = i|y) = ∑
A∈Fi

∏
j∈A

p j ∏
j∈Ac

(1− p j), (33)

satisfying a Poisson-Binomial distribution, where p j =
a j

a j−1+a j
, Fi is the subset of i integers that could be selected
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from {1,2, · · · ,K} and Ac is the complement of A. Notice
that Fi represents CK

2 possible cases. Then, to compute the
expected value becomes hopeless since listing all the proba-
bility out as we did in theorem 3 looks impractical. Though
Le Cam, L. [72] gives an approximation of Poisson-Binomial
by a Poisson distribution, the computation for the

E(|r1(x)− y|) =
K

∑
y=1

K

∑
r=1
|r− y|P(ŷ = r) (34)

is not an easy task. To overcome this, statistics provides us
a powerful tool with no need for knowing the actual distri-
butions. To further strengthen that ranking-CNN wins over
softmax in age estimation, we propose a t-test with hypothesis
that compared with softmax, our ranking-CNN does reduce the
ranking error in the sense of statistical significance. The details
will be discussed later in the experiment section.

C. Age Estimation

When humans predict a person’s age, it is generally easier
to determine if a person is elder than a specific age than
directly giving an exact age. With ranking-CNN, it provides a
framework for simultaneous feature learning and age ranking
based on facial images. The rationale of using ranking-CNN
for age estimation is that the age labels are naturally ordinal,
and ranking-CNN can keep the relative ordinal relationship
among different age groups.

We adopt a general pre-processing procedure for face detec-
tion and alignment before feeding the raw data to the networks.
Specifically, given an input color image, we first perform face
detection using Harr-based cascade classifiers [73]. Then, face
alignment is conducted based on the location of eyes. Finally,
the image is resized to a standard size of 256×256×3 for
network training and age estimation.

IV. EXPERIMENTS

In this section, we demonstrate the performance of ranking-
CNN through extensive experiments. We first choose the
appropriate architecture for the basic CNN by evaluating it
on binary age ranking problems. Then, we move to multiple
age estimation problems and evaluate ranking-CNN.

For multiple age estimation, we compared the features
learned by ranking-CNN with the ones obtained through
BIF+OLPP [3], ST[4], and multi-class CNN. BIF features are
implemented with Gabor filters in 8 orientations and 8 scales
and followed by max-pooling. In addition, OLPP is employed
to learn the age manifold based on BIF features, in which the
top 1,000 eigenvectors are used. In ST, the Gabor coefficients
are scattered into 417 routes in two convolutional layers
and pooled with Gaussian smoothing. Multi-class CNN is
commonly used for age estimation [11], [9], but it completely
ignores the ordinal information in age labels. Its structure
is similar to a basic CNN (three convolutional and pooling
layers and three fully connected layers) with the exception
that the last fully-connected layer contains multiple outputs
corresponding to the number of ages to be classified instead
of the binary one. As for the age estimators, SVM is selected

for comparison due to its proved performance [3]. In ranking-
based approach (Ranking-SVM), following [4], SVM is used
as the binary classifier for each age label and the results are
aggregated to give the final output. Finally, we also directly
compare age estimation results obtained by ranking-CNN with
the ones reported in the literature by leading deep learners on
benchmark datasets.

The comparison and evaluation of different methods in our
experiments are reported in terms of precision of each age
group, accuracy of each binary ranker as well as two widely
adopted performance measures [44], [4]: Mean Absolute Er-
ror (MAE) and Cumulative Score (CS). MAE computes the
absolute costs between the exact and the predicted ages (the
lower the better):

MAE =
M

∑
i=1

ei/M, (35)

where ei = |l̂i− li| is the absolute cost of misclassifying true
label li to l̂i, and M is the total amount of testing samples.
CS indicates the percentage of data correctly classified in the
range of (li−L, li +L), a neighbor range of the exact age li
(the larger the better):

CS(L) =
M

∑
i=1

[ei ≤ L]/M, (36)

where [· ] is the truth-test operator and L is the parameter
representing the tolerance range.

Also, we used paired t-test to demonstrate the statistical
significance of our empirical comparison. Suppose {εi}N

i=1 are
the errors obtained through the test set {(xi,yi)}N

i=1 by ranking-
CNN, and {τi}N

i=1 are errors in testing by another method. We
employ paired t-test to determine if the former significantly
outperforms the latter. A two-sample t-statistic with unknown
but equal variance is computed as:

t =
µ1−µ2

S1,2

√
2
n

, (37)

where µ1 and µ2 are the mean of two sets of errors respec-

tively, S1,2 =

√
S2

1+S2
2

2 , and S1, S2 are unbiased estimators of
variances of two samples, where

S2
1 =

1
N−1

N

∑
n=1

(εn−µ1)
2

S2
2 =

1
N−1

N

∑
n=1

(τn−µ2)
2

(38)

Define H0: µ1− µ2 = 0 (the performance of ranking-CNN
is not significantly improved), H1: µ2−µ1 > 0 (otherwise). In
the hypothesis test, we compute the p value at 1% significance
level. If the p value is small enough, we reject the hypothesis
H0.

A. Basic CNN on Binary Age Ranking

We implemented two architectures for the basic CNN in the
GPU mode with Caffe [61], namely, 2+2 and 3+3. For the
2+ 2 architecture, it is derived from LeNet [45]. It contains
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TABLE I
BASIC CNNS FOR BINARY AGE RANKING: ARCHITECTURE AND INITIALIZATION. THE HIGHEST ACCURACY IS HIGHLIGHTED IN BOLD.

20-29 VS. 40-49 <20 VS. >50
STRUCTURE 2+2 2+2 3+3 3+3 2+2 2+2 3+3 3+3
WEIGHT INITIALIZATION XAVIER GAUSSIAN XAVIER GAUSSIAN XAVIER GAUSSIAN XAVIER GAUSSIAN
# OF SAMPLES 3000 3000 3000 3000 1500 1500 1500 1500

ACCURACY
89.20% 88.13% 93.95% 96.32% 95.35% 94.98% 96.28% 98.72%
±0.21% ±0.15% ±0.13% ±0.18% ±0.19% ±0.17% ±0.14% ±0.12%

two convolutional layers with 20 and 50 filters in each layer
respectively, followed by max-pooling layers and two fully
connected layers. In the first fully connected layer, there are
500 outputs, and the number of outputs in the second fully
connected layer is decided by the number of categories. For
the 3+3 architecture, it is similar to our basic CNN shown in
Fig. 2. It is derived from a simplified version of the ImageNet
CNN [49] with fewer layers for higher efficiency [11].

The networks are initialized with random weights generated
in two methods. For the weights following Gaussian distribu-
tion, the mean is 0, and standard deviation is 0.01. For the
Xavier initialization [74], the weights W ∼U(−scale,scale)
follow a uniform distribution with the range inversely propor-
tional to the number of incoming and outgoing nodes:

scale =
√

3/n

n =
f anin + f anout

2
f anin = numchannel× columns f ilter× rows f ilter
f anout = numout put × columns f ilter× rows f ilter

(39)

where in our case, for example, in the first convolutional layer
C1, numchannel is 3, numout put is 96, columns f ilter and rows f ilter
are both 5.

We evaluated the architectures of the networks on two
binary age ranking problems: age groups 20-29 vs. 40-49,
and age groups <20 vs. >50 on MORPH dataset. MORPH
contains 55,134 facial images with the age range from 16 to
77. It provides specific age, gender and ethnicity information
for each individual. Based on the availability of samples, we
randomly selected 6,000 and 3,000 images from MORPH,
respectively, for the two problems. The selection is balanced
over age groups. In our experiments, 80% of the data is used
for training and the rest 20% for testing (no overlapping with
training). The averaged accuracy is reported with standard de-
viations over 10 runs. In each run, the network is trained using
supervised training, and the maximum number of iterations is
set at 100,000. We consider the training converges when the
change of training error between two adjacent iterations is less
than 0.001.

As we can see in Table I, the 3+3 architecture and Gaus-
sian initialization N(0,0.012) gives the highest classification
accuracy in both problems. For the same architecture, Xavier
initialization generates comparable results better than all com-
binations with 2 + 2 architecture. For 2 + 2 CNNs, Xavier
initialization actually gives higher accuracy than Gaussian. In
“<20 vs. >50” problem, 2+2 CNNs give close accuracy but
when it comes to a more complex situation (i.e., “20-29 vs. 40-
49”), the accuracy decreases dramatically. Since 2+2 CNNs
are generally trained faster than 3+3 CNNs, we can infer that
if the problem is not too complicated and computing resource

is limited, then 2+2 CNNs could still be considered. In our
case, since we have to distinguish between adjacent ages, we
select the 3+3 architecture and Gaussian initialization for best
performance. It is used for all the basic networks in ranking-
CNN to complete the remaining experiments.

For our hardware settings, we use a single GTX 980
graphics card (including 2,048 CUDA cores), i7-4790K CPU,
32GB RAM, and 2TB hard disk drive. The training time for
the base CNN with the selected 3+ 3 architecture is around
6 hours. Fine-tuning takes about 20 to 30 minutes for each
basic CNN. Totally, it takes about 30 hours to pre-train the
base CNN and fine-tune 50 basic CNNs.

B. Multiple Age Estimation
In this section, we evaluate the performance of Ranking-

CNN on three benchmark datasets: MORPH Album 2 [75],
FG-NET [76] and Adience Faces benchmark [27].

1) MORPH: To further demonstrate the performance im-
provement of ranking-CNN, we consider the age estimation
problem in the range between 16 and 66 years old on the most
commonly used age estimation benchmark dataset MORPH
Album 2, and compare ranking-CNN with other state-of-the-
art feature extractors and age estimators. First, we pre-train a
base network with 26,580 image samples from the unfiltered
faces dataset [27]. The age group labels for these images are
used in training as surrogate labels [77]. Then, we fine-tune
our ranking-CNN model on MORPH.

In our experiments, when fine-tuning from the pre-trained
base CNN to basic CNNs, we set the learning rate for the
last fully-connected layer 10 times of the one used in the
previous layers. Thus, the majority of the weights in the basic
CNNs has only a slight difference, all similar to the ones
in the base CNN. In principle, this training procedure works
similarly as weight sharing, but with the additional benefit of
easier parallelization. That is, the 50 basic CNNs can be fine-
tuned parallelly on a distributed computing platform, while
traditional weight-sharing has to be done sequentially.

Following the settings used in some recent work on age
estimation [44], [10], [78], [79], we randomly select 54,362
samples in the age range between 16 and 66 from the MORPH
dataset. The age and gender information of the selected
samples is shown in Table II. Note that these images are not
used in the pre-training stage. All the selected samples are then
divided into two sets: 80% of the samples are used for basic
networks training and the rest 20% samples for testing. There
is no overlapping between the training and testing sets, and
we repeat five independent runs to evaluate the performance
during experiments.

As there are 51 age groups in this age range, 50 binary
rankers are needed for ranking approaches (i.e., ranking-CNN
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TABLE II
THE AGE AND GENDER INFORMATION OF THE 54,362 SAMPLES

RANDOMLY SELECTED FROM MORPH ALBUM 2.

<20 20-29 30-39 40-49 >50 Total
Male 6543 13849 12322 9905 3321 45940
Female 829 2291 2886 1975 441 8422
Total 7372 16140 15208 11880 3762 54362

and ranking-SVM). In our experiments, 43,490 samples (80%
of all the randomly selected samples) with binary labels are
selected to train each basic network or SVM in ranking-
CNN and ranking-SVM, respectively. The exactly same set of
samples with multi-class labels are used to train multi-class
CNN and SVM, respectively. The rest 10,872 samples were
used for testing results. All experiments are repeated with five
independent runs.

Basically, we have three sets of features: engineered fea-
tures (i.e., BIF+OLPP and ST), learned classification features
(multi-class CNN) and learned ranking features (ranking-
CNN). CNN feature and ranking-CNN feature are the output
after layer F8 of multi-class CNN and Ranking-CNN respec-
tively. Also, we have two sets of age estimators: classification
methods (i.e., SVM and Multi-class CNN) and ranking meth-
ods (ranking-CNN and ranking-SVM). We report MAE of all
possible combinations of feature extractors and age estimators
(eight in total) in Table III. A dash in the table means that the
selected feature set is not applicable to the selected estimator.

As shown in Table III, ranking-CNN with its features
achieves the lowest MAE of 2.96±0.015 in all the combina-
tions. Ranking-CNN features with Ranking-SVM achieves the
second best MAE result, and this validates the effectiveness
and generality of ranking-CNN features. In comparison, the
lowest MAE achieved by the learned classification features
is 3.65±0.028. Note the multi-class CNN represents the com-
monly used CNN-based age estimation methods [11], [9]. Our
experimental results strongly support the theoretical results
(ranking vs. softmax) we presented before. Another fact we
can see is that the performance of CNN-based features gets
weakened when combined with SVM-based estimators. The
lowest MAE achieved by engineered features is 4.88±0.030 by
ST+ranking-SVM. Notice that ST works better with ranking-
SVM, and BIF+OLPP works better with SVM. This could be
caused by the fact that in the literature specific features were
manually selected for certain estimators to achieve the best
performance.

The comparison in terms of CS of the eight combinations of
features and estimators are given in Fig. 4. Clearly, ranking-
CNN outperforms all others across the entire range of L (age
error tolerance range) from 0 to 10. Specifically, Ranking-
CNN can reach the accuracy of 89.90% for L= 6, and 92.93%
for L = 7. The other fact we notice is that four CNN-based
methods reach a higher accuracy for L = 10 than the others.

In addition, in Fig. 5, we compare the estimation precision
of each age category for the eight combinations. The precision
is defined as below:

precision =
samplescorrect ∩ samplesall

samplesall
(40)

Fig. 4. Comparison on Cumulative Score with L in [0,10].

Fig. 5. Precision for each age group after aggregation.

Fig. 6. Accuracy of each binary ranker in ranking models.

where samplescorrect denotes the samples correctly classified to
a certain age category, and samplesall denotes the total number
of samples classified to this age category. It is obvious that
ranking-CNN has a more consistent performance on each of
the age groups. For methods like BIF+OLPP+SVM, there are
many age categories with 0 precision. Taking a closer look, we
found out that this is caused by the unbalanced classification of
the multi-class estimators, where samples are mostly classified
to certain categories instead of all the categories. The problem
can be alleviated by ranking-CNN to some extent. In fact,
none of the methods reach the age categories after 54. This
is mainly because comparing with more than 50K samples in
total, there are too few samples for age categories after 54
(averagely around 80 samples in each age category).
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TABLE III
COMPARISON OF MAE AMONG DIFFERENT COMBINATIONS OF FEATURES AND ESTIMATORS. THE LOWEST MAE IS HIGHLIGHTED IN BOLD. A DASH IN

THE TABLE MEANS THAT THE SELECTED FEATURE IS NOT APPLICABLE TO THE SELECTED ESTIMATOR.

ENGINEERED FEATURES LEARNED FEATURES
BIF+OLPP ST CNN FEATURE RANKING-CNN FEATURE

CLASSIFICATION SVM 4.99±0.035 5.15±0.040 3.95±0.020 -
MODEL MULTI-CLASS CNN - - 3.65±0.028 -
RANKING RANKING-SVM 5.03±0.028 4.88±0.030 - 3.63±0.019
MODEL RANKING-CNN - - - 2.96±0.015

TABLE IV
T TEST OUTCOMES OF ALL EIGHT COMBINATIONS OF FEATURES AND ESTIMATORS.

RANKING-CNN RANKING-CNN FEATURE ST+RANKING-SVM BIF+OLPP
+RANKING-SVM +RANKING-SVM

RANKING-CNN NAN 1 1 1
RANKING-CNN FEATURE

6.36e−148 NAN 1 1+ RANKING-SVM
ST+RANKING-SVM 0 0 NAN 1
BIF+OLPP+RANKING-SVM 0 0 1.79e−135 NAN
MULTI-CLASS CNN 0 0.14 1 1
CNN FEATURE+SVM 4.12e−276 8.90e−184 1 1
ST+SVM 0 0 1.94e−121 2.00e−4

BIF+OLPP+SVM 0 0 4.56e−90 0.18

MULTI-CLASS CNN CNN FEATURE+SVM ST+SVM BIF+OLPP+SVM
RANKING-CNN 1 1 1 1
RANKING-CNN FEATURE 0.85 1 1 1+ RANKING-SVM
ST+RANKING-SVM 0 0 1 1
BIF+OLPP+RANKING-SVM 0 0 0.99 0.81
MULTI-CLASS CNN NAN 1 1 1
CNN FEATURE+SVM 5.43e−24 NAN 1 1
ST+SVM 0 0 NAN 3.66e−6

BIF+OLPP+SVM 0 0 0.99 NAN

In Fig. 6, we further compared the four ranking-based
methods and report their performance on each binary ranker.
Again, ranking-CNN demonstrates a consistent outstanding
performance throughout all binary problems. Note that when
the data for the binary rankers are not balanced (and thus
higher baseline accuracy, e.g., age< 20 and age> 48), all
rankers seem to perform quite well. However, when it comes
to the age range with more balanced data (and thus lower
baseline accuracy, age 20− 48), the superior performance of
ranking-CNN is shown, and this would lead to better overall
performance of age estimation. Again, our results clearly
illustrated the remarkable improvement of using ranking-CNN
for age estimation.

To demonstrate that the experimental results we obtained
do not happen simply by chance, we report in Table IV
the p-values from paired t-test. We report the p values of
the paired t-test at significant level 1%. In Table IV, if
p < 1%, we reject the null hypothesis. Otherwise, we don’t.
For example, when comparing “ranking-CNN” with “ranking-
CNN feature+ranking SVM”, the p-value 6.36e−148 is much
less than 0.01, which means that we reject the null hypothesis
that “the performance of ranking-CNN is not significantly
improved”. The “NaN” in the table means we could not
compare a method with itself. As we can see, statistically,
ranking-CNN significantly outperforms all other methods,
which implies if we repeat the experiments for numerous
times, then in 99% of those experiments, ranking-CNN would

outperform. From the table, Ranking-CNN Feature+Ranking
SVM and the Multi-Class CNN tied for the second place,
followed by CNN Feature+SVM. ST+Ranking SVM stands
out among the engineered feature-based methods. Lastly,
BIF+OLPP+Ranking-SVM ties with BIF+OLPP+SVM, and
ST+SVM has no significant improvement than any other
methods.

Furthermore, in Table V, we compare ranking-CNN with
other deep learning-based age estimation models, i.e., Ordinal
Regression with CNN (OR-CNN) [44], Metric Regression
with CNN (MR-CNN) [44], Deep EXpectation (DEX) [33]
and GoogLeNet in [38]. Since all the experiments are carried
out on the MORPH dataset and we followed the same setting
for data partition, we can directly compare the MAE of
Ranking-CNN with the ones obtained by these deep learners.
Notice that in order to make a fair comparison among all
the deep learners, all existing results are reported without
pre-training using additional facial images. For ranking-CNN,
results with and without pre-training are both reported. Clearly,
ranking-CNN outperforms these deep learning models in both
cases.

Finally, we show the efficiency brought by the new error
bound with a modified training strategy. According to [4] and
our experiment results, the basic CNNs between age groups
36 and 45 get the largest training errors as they have more
balanced training data (and thus lower baseline accuracy).
For these basic CNNs, we train them until the change of the
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training errors between two adjacent iterations is less than
0.001. For all other basic CNNs (16 to 35 and 46 to 65),
we only train them until the change is less than 0.01. In this
experiment setting, 80% of the basic CNNs are trained with
dramatically less epochs (60% less on average), leading to
much faster training. Yet, we still achieved very competitive
results on age estimation, an MAE of 3.07±0.017.

TABLE V
COMPARISON WITH OTHER DEEP LEARNING MODELS ON THE MORPH

DATASET. THE LOWEST MAE IS HIGHLIGHTED IN BOLD.
MAE

Ranking-CNN 2.96±0.015
MR-CNN [44] 3.27±0.14
OR-CNN [44] 3.34±0.28
DEX [33] 3.25
GoogLeNet [38] 3.13

Ranking-CNN 3.03±0.018(without pre-training)
2) FG-NET: The FG-NET dataset is another benchmark

dataset for age estimation. Since there are merely 1,002 photos
in this dataset, it is not suitable for direct training of deep
learners. Thus, we evaluate the performance on this dataset
by fine-tuning the ranking-CNN model trained on the MORPH
dataset. The age range we considered in Section IV-B1 is 16
to 66, so we select the 405 samples from FG-NET in the
same range for this experiment. Similarly, we use 80% of these
samples for training and 20% for testing and compare the
MAE results with prior arts.

TABLE VI
AGE ESTIMATION RESULTS ON FG-NET DATASET. THE LOWEST MAE IS

HIGHLIGHTED IN BOLD.
MAE

Ranking-CNN 4.13
DEX [33] 4.63
CSOHR [4] 4.48
BIF+OLPP+SVM [3] 4.77
RankBoost [41] 5.67

As shown in Table VI, ranking-CNN outperforms other
models on FG-NET dataset as well, and achieves the lowest
MAE of 4.13. This further demonstrates the effectiveness and
generalization ability of ranking-CNN. CSOHR achieves the
second best MAE result of 4.48 while the MAE of DEX is
4.63. For BIF+OLPP+SVM and RankBoost, the MAE results
are 4.77 and 5.67 respectively.

3) Adience: There are 26,580 photos in the Adience bench-
mark dataset of unfiltered faces. The samples are categorized
into eight age groups with labels “0-2, 4-6, 8-13, 15-20, 25-
32, 38-43, 48-53 and over 60”, so we train seven basic CNNs
for this task. Following the same settings in some recent work
[11], [37], [27], we randomly select 80% of the samples as
the training set and the rest 20% as the testing set.

TABLE VII
AGE ESTIMATION RESULTS ON THE ADIENCE BENCHMARK. THE HIGHEST

ACCURACY IS HIGHLIGHTED IN BOLD.
Accuracy

Ranking-CNN 53.7±4.4
CNN [11] 50.7±5.1
Cascaded CNN [37] 52.88±6
Dropout-SVM [27] 45.1±2.6

As shown in Table VII, the mean accuracy±standard error
over all the age categories by ranking-CNN are compared with

several results recently reported in the literature. It is obvious
that ranking-CNN outperforms other methods and achieves
the highest accuracy of 53.7± 4.4 for age categorization on
Adience. Other CNN-based models also achieve good results.
The accuracy of Cascaded CNN is 52.88± 6, and the multi-
class CNN which has the architecture similar to the base
CNN in ranking-CNN achieved 50.7±5.1. The dropout-SVM
method has the lowest accuracy of 45.1± 2.6 among the
compared models.

V. CONCLUSION

In this paper, we proposed ranking-CNN, a novel deep
ranking framework for age estimation. Our model contains
a set of basic CNNs, each of which is initialized with the
pre-trained base CNN and fine-tuned with ordinal labels. The
binary output of basic CNNs are aggregated to make the final
age prediction. From a theoretical perspective, we established
a much tighter error bound for ranking-based age estimation,
based on which, we mathematically proved the convergence of
SGD-based training of ranking-CNN using a novel stochastic
approximation approach and rigorously showed that ranking-
CNN, by taking the ordinal relation between ages into con-
sideration, is more likely to get smaller estimation errors
when compared with multi-class classification approaches.
Through extensive experiments, we show that ranking-CNN
outperforms other state-of-the-art age estimation methods on
benchmark datasets.
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